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Abstract- A novel splitting criterion based on alpha divergence is uses to generalize several well-known 
splitting criteria such as those used in C4.5 and CART. The new method neighborhood cleaning rule (NCL) 
outperformed simple random and one sided selection is used. The success of SVM is very limited when it is 
applied to the problem learning from imbalanced datasets in which negative instance heavily outnumber the 
positive instance. To generate best performing classifier we introduce "budget sensitive" progressive sampling 
algorithm for selecting training examples. Machine learning algorithms have been used to build classification 
rules from datasets consisting of hundreds of thousands of instance. The imbalanced learning problem is 
concerned with the performance of learning algorithm in the presence of underrepresented data and sever class 
distribution skews. Adapt machine learning algorithm are been used for imbalance class and misclassification 
cost for the look at under sampling and oversampling which increase or decrease respectively.  
 

Index Terms- Training examples; classification; machine learning. 
 

1. INTRODUCTION: 
                    The literature review is based on the 
fundamental understanding of knowledge discovery 
and analysis from raw data to support decision-
making processes. The problem of learning from 
imbalanced data is a relatively new challenge that has 
attracted growing attention from both academia and 
industry. The factor of under sampling and 
oversampling is been processed to improve the SVM 
by using any one of this algorithm. Two levels of 
classifiers called ‘stacked-generalization’ or ‘meta 
learning’ are used to estimate the performance of 
training set.(learning from the information generated 
by a set of learners ). Machine learning algorithms 
have been used to build classification rules from data 
sets consisting of hundreds of thousands of instances. 
 
2. IMPROVING IDENTIFICATION OF 
DIFFICULT SMALL CLASSES BY 
BALANCING CLASS DISTRIBUTION 

Real-world data sets often have imbalanced 
class distribution, because many natural processes 
produce certain observations infrequently. For 
example, rare diseases in a population may result in 
medical data with small diagnostic groups. When 
some classes are heavily under-represented, statistical 
and machine learning methods are likely to run into 
problems. Cases from the rare classes are lost among 
the other cases during learning. The resulting 
classifiers misclassify new unseen rare cases, and 
descriptive models may give an inadequate picture of 
the data. The learning task is even more problematic, 
if a small class is difficult to identify because of its 

other characteristics. A small class may, for example, 
overlap heavily the other classes. In the following, we  
 
 
refer to a small and difficult class as a class of 
interest. We balanced class distribution with data 
reduction before the actual analysis, because we 
aimed to develop a general-purpose method, whose 
results may be given directly to statistical and 
machine learning methods. The most well-known data 
reduction technique comes from the area of statistics, 
where sampling is used to allow analyses which 
would be impractical with large populations. Data 
reduction has been utilized in the area of machine 
learning especially to accelerate the instance based 
learning methods. Recently one-sided selection (OSS) 
which uses instance-based methods to reduce the 
larger class when class distribution of a two-class 
problem is imbalanced. In this paper, we describe a 
new method called neighborhood cleaning rule that 
utilizes the OSS principle, but considers more 
carefully the quality of the data to be removed. 

 
3. APPLYING SUPPORT VECTOR MACHINES 
TO IMBALANCED DATASETS 

Support Vector Machines (SVM) was 
introduced by Vapnik and colleagues and they have 
been very successful in application areas ranging from 
image retrieval, handwriting recognition to text 
classification. However, when faced with imbalanced 
datasets where the number of negative instances far 
outnumbers the positive instances, the performance of 
SVM drops significantly. Application areas such as 
gene profiling, medical diagnosis and credit card 
fraud detection have highly skewed datasets with a 
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very small number of positive instances which are 
hard to classify correctly, but important to detect 
nevertheless . An imbalance of 100 to 1 exists in fraud 
detection domains, even approaching 100,000 to 1 in 
other applications. 

Classifiers generally perform poorly on 
imbalanced datasets because they are designed to 
generalize from sample data and output the simplest 
hypothesis that best fits the data, based on the 
principle of Occam’s razor. This principle is 
embedded in the inductive bias of many machine 
learning algorithms including decision trees, which 
favor shorter trees over longer ones. With imbalanced 
data, the simplest hypothesis is often the one that 
classifies almost all instances as negative Another 
factor is that making the classifier too specific may 
make it too sensitive to noise and more prone to learn 
an erroneous hypothesis. Certain algorithms 
specifically modify the behavior of existing 
algorithms to make them more immune to noisy 
instances, such as the IB3 algorithm for KNN, or 
pruning of decision trees, or soft margins in SVM . 
While these approaches work well for balanced 
datasets, with highly imbalanced datasets having 
ratios of 50 to 1 or more the simplest hypothesis is 
often the one that classifies every instance as 
negative. Furthermore, the positive instances can be 
treated as noise and ignored completely by the 
classifier. A popular approach towards solving these 
problems is to bias the classifier so that it pays more 
attention to the positive instances. This can be done, 
for instance, by increasing the penalty associated with 
misclassifying the positive class relative to the 
negative class. Another approach is to preprocess the 
data by oversampling the majority class or under 
sampling the minority class in order to create a 
balanced dataset. We combine both of these 
approaches in our algorithm and show that we can 
significantly improve the performance of SVM 
compared to applying any one approach. We also 
show in this paper that even though under sampling 
the majority class does improve SVM performance, 
there is an inherent loss of valuable information in 
this process. Our goal was to retain and use this 
valuable information, while simultaneously boosting 
the efficacy of oversampled data. Combined with this 
dual approach we also used a bias to make SVM more 
sensitive to the positive class. We specifically chose 
SVM to attack the problem of imbalanced data 
because SVM is based on strong theoretical 
foundations and our empirical results show that it 
performs well with moderately imbalanced data even 
without any modifications. Its unique learning 
mechanism makes it an interesting candidate for 
dealing with imbalanced datasets, since SVM only 
takes into account those instances that are close to the 
boundary, i.e. the support vectors, for building its 
model. This means that SVM is unaffected by non-
noisy negative instances far away from the boundary 
even if they are huge in number. 

4. LEARNING WHEN TRAINING DATA ARE 
COSTLY: THE EFFECT OF CLASS 
DISTRIBUTION ON TREE INDUCTION  

In many real-world situations the number of 
training examples must be limited because obtaining 
examples in a form suitable for learning may be costly 
and/or learning from these examples may be costly. 
These costs include the cost of obtaining the raw data, 
cleaning the data, storing the data, and transforming 
the data into a representation suitable for learning, as 
well as the cost of computer hardware, the cost 
associated with the time it takes to learn from the 
data, and the “opportunity cost” associated with 
suboptimal learning from extremely large data sets 
due to limited computational resources. When these 
costs make it necessary to limit the amount of training 
data, an important question is: in what proportion 
should the classes be represented in the training data? 
In answering this question, this article makes two 
main contributions. It addresses (for classification-tree 
induction) the practical problem of how to select the 
class distribution of the training data when the amount 
of training data must be limited, and, by providing a 
detailed empirical study of the effect of class 
distribution on classifier performance, it provides a 
better understanding of the role of class distribution in 
learning Some practitioners believe that the naturally 
occurring marginal class distribution should be used 
for learning, so that new examples will be classified 
using a model built from the same underlying 
distribution. Other practitioners believe that the 
training set should contain an increased percentage of 
minority-class examples, because otherwise the 
induced classifier will not classify minority-class 
examples well. This latter viewpoint is expressed by 
the statement, “if the sample size is fixed, a balanced 
sample will usually produce more accurate predictions 
than an unbalanced split”. However, we are aware of 
no thorough prior empirical study of the relationship 
between the class distribution of the training data and 
classifier performance, so neither of these views has 
been validated and the choice of class distribution 
often is made arbitrarily—and with little 
understanding of the consequences. In this article we 
provide a thorough study of the relationship between 
class distribution and classifier performance and 
provide guidelines—as well as a progressive sampling 
algorithm—for determining a “good” class 
distribution to use for learning. 

 
There are two situations where the research 

described in this article is of direct practical use. 
When the training data must be limited due to the cost 
of learning from the data, then our results- and the 
guidelines we establish—can help to determine the 
class distribution that should be used for the training 
data. In this case, these guidelines determine how 
many examples of each class to omit from the training 
set so that the cost of learning is acceptable. The 
second scenario is when training examples are costly 
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to procure so that the number of training examples 
must be limited. In this case the research presented in 
this article can be used to determine the proportion of 
training examples belonging to each class that should 
be procured in order to maximize classifier 
performance. Note that this assumes that one can 
select examples belonging to a specific class. This 
situation occurs in a variety of situations, such as 
when the examples belonging to each class are 
produced or stored separately or when the main cost is 
due to transforming the raw data into a form suitable 
for learning rather than the cost of obtaining the raw, 
labeled, data. Fraud detection provides one example 
where training instances belonging to each class come 
from different sources and may be procured 
independently by class. Typically, after a bill has been 
paid, any transactions credited as being fraudulent are 
stored separately from legitimate transactions. 
Furthermore transactions credited to a customer as 
being fraudulent may in fact have been legitimate, and 
so these transactions must undergo a verification 
process before being used as training data. 

 
In other situations, labeled raw data can be 

obtained very cheaply, but it is the process of forming 
usable training examples from the raw data that is 
expensive. As an example, consider the phone data 
set, one of the twenty-six data sets analyzed in this 
article. This data set is used to learn to classify 
whether a phone line is associated with a business or a 
residential customer. The data set is constructed from 
low-level call-detail records that describe a phone 
call, where each record includes the originating and 
terminating phone numbers, the time the call was 
made, and the day of week and duration of the call. 
There may be hundreds or even thousands of call-
detail records associated with a given phone line, all 
of which must be summarized into a single training 
example. Billions of call-detail records, covering 
hundreds of millions of phone lines, potentially are 
available for learning. Because of the effort associated 
with loading data from dozens of computer tapes, 
disk-space limitations and the enormous processing 
time required to summarize the raw data, it is not 
feasible to construct a data set using all available raw 
data. Consequently, the number of usable training 
examples must be limited. In this case this was done 
based on the class associated with each phone line—
which is known. The phone data set was limited to 
include approximately 650,000 training examples, 
which were generated from approximately 600 
million call-detail records. Because huge transaction-
oriented databases are  now routinely being used for 
learning, we expect that the number of training 
examples will also need to be limited in many of these 
cases. 

 
5. A STUDY OF THE BEHAVIOR OF SEVERAL 
METHODS FOR BALANCING MACHINE 
LEARNING TRAINING DATA 

Most learning systems usually assume that 
training sets used for learning are balanced. However, 
this is not always the case in real world data where 
one class might be represented by a large number of 
examples, while the other is represented by only a 
few. This is known as the class imbalance problem 
and is often reported as an obstacle to the induction of 
good classifiers by Machine Learning (ML) 
algorithms. Generally, the problem of imbalanced 
data sets occurs when one class represents a 
circumscribed concept, while the other class 
represents the counterpart of that concept, so that 
examples from the counterpart class heavily 
outnumber examples from the positive class. This sort 
of data is found, for example, in medical record 
databases regarding a rare disease, were there is a 
large number of patients who do not have that disease; 
continuous fault-monitoring tasks where non-faulty  
examples heavily outnumber faulty examples, and 
others. In recent years, there have been several 
attempts at dealing with the class imbalance problem 
in the field of Data Mining and Knowledge Discovery 
in Databases, to which ML is a substantial 
contributor. Related papers have been published  in 
the ML literature aiming to overcome this problem. 
The ML community seems to agree on the hypothesis 
that the imbalance between classes is the major 
obstacle in inducing classifiers in imbalanced 
domains. However, it has also been observed that in 
some domains, for instance the Sick data set , 
standard ML algorithms are capable of inducing good 
classifiers, even using highly imbalanced training sets. 
This shows that class imbalance is not the only 
problem responsible for the decrease in performance 
of learning algorithms. we developed a systematic 
study aiming to question whether class imbalances 
hinder classifier induction or whether these 
deficiencies might be explained in other ways. Our 
study was developed on a series of artificial data sets 
in order to fully control all the variables we wanted to 
analyze.  The results of our experiments, using a 
discrimination-based inductive scheme, suggested that 
the problem is not solely caused by class imbalance, 
but is also related to the degree of data overlapping 
among the classes. The results obtained in this 
previous work motivated the proposition of two new 
methods to deal with the problem of learning in the 
presence of class imbalance. These methods ally a 
known over-sampling method, namely Smote , with 
two data cleaning methods: Tomek links and Wilson’s 
Edited Nearest Neighbor Rule. The main motivation 
behind these methods is not only to balance the 
training data, but also to remove noisy examples lying 
on the wrong side of the decision border. The removal 
of noisy examples might aid in finding better-defined 
class clusters, therefore, allowing the creation of 
simpler models with better generalization capabilities. 
In addition, in this work we perform a broad 
experimental evaluation involving ten methods, three 
of them proposed by the authors, to deal with the class 
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imbalance problem in thirteen UCI data sets. We 
concluded that over-sampling methods are able to aid 
in the induction of classifiers that are more accurate 
than those induced from under-sampled data sets. This 
result seems to contradict results previously published 
in the literature. Two of our proposed methods 
performed well in practice, in particular for data sets 
with a small number of positive examples. It is worth 
noting that Random over-sampling, a very simple 
over-sampling method, is very competitive to more 
complex over-sampling methods. 

 
6. NEW APPLICATIONS OF ENSEMBLES OF 
CLASSIFIERS 

Recently, efforts aimed at combining multiple 
classifiers into one classification system (ensemble of 
classifiers, multiple classifier systems, mixtures of 
experts, committees of learners, etc.) have become 
very popular, and are regarded as one of the most 
promising current research directions in machine 
learning and pattern recognition . The main purpose 
for building up an ensemble is to obtain higher 
classification accuracy than that produced by its 
components (individual classifiers that make it up). 
Ensembles have been defined as consisting of a set of 
individually trained classifiers whose decisions are 
combined when classifying new instances. The 
combination can be made in many different ways. The 
simplest employs the majority rule in a plain voting 
system. Despite its simplicity, it is generally regarded 
as a very robust combination. More elaborate schema 
use weight voting rules, where each component is 
associated with a weight. This weight is computed 
while training the classifier, and must reflect how 
accurate the individual classifier is, as estimated by its 
performance on the training set. Other, more 
sophisticated, architectures have also been proposed, 
consisting of two levels of classifiers in what has been 
called ‘stacked-generalisation’ or ‘metalearning’ 
(learning from the information generated by a set of 
learners ).  It is widely accepted that improvement in 
the overall predictive accuracy by the ensemble can 
occur only if there is diversity among its components, 
i.e. if the individual classifiers do not always agree. 
Of course, no benefit arises from combining the 
predictions of a set of classifiers that frequently 
coincide in the classifications (strongly correlated 
classifiers). Although measuring diversity is not 
straightforward , this classifiers’ independence has 
been sought through different ways, by: 

 
• Manipulating the training patterns (training 

each classifier on different subsets of the 
training prototypes): cross-validation, 
bagging, boosting, etc. 

• Manipulating the input features (training 
each classifier with different subsets of the 
available features). 

• Manipulating the class labels of the training 
prototypes. 

• Incorporating random noise into the feature 
values or into some parameters of the 
learning model considered. 

Most of the research done up to now has been 
concerned with the creation of ensembles consisting 
of classifiers based on the same learning model. 
Although it is likely that learning with different 
algorithms will produce diverse classifiers, this 
diversity is not guaranteed. Moreover, this approach 
would require the employment of an effective 
weighted combination, since some of these classifiers 
would perform much worse than others. Ensembles 
based on the combination of a set of classifiers are 
currently used to achieve higher recognition accuracy. 
In this paper, we explore possibilities to obtain other 
benefits from the employment of an ensemble. In 
particular, we present results of experiments carried 
out to research the convenience of using ensembles 
for three different tasks: 
 
a) To cope with unbalanced training samples, 
b) To get scalability of some pre-processing 
algorithms, 
c) To filter the training sample. 
In our research, we have focused on the widely used 
nearest neighbour rule. This selection has been 
motivated by the flexibility and other positive 
characteristics of this classification method. 
 
7. HETEROGENEOUS UNCERTAINTY 
SAMPLING FOR SUPERVISED LEARNING  

Machine learning algorithms have been used 
to build classification rules from data sets consisting 
of hundreds of thousands of instances. In some 
applications unlabeled training instances are abundant 
but the cost of labeling an instance with its class is 
high. In the information retrieval application 
described here the class labels are assigned by a 
human, but they could also be assigned by a computer 
simulation or a combination of both . The terms oracle 
and teacher have been used for the source of labels; 
we will usually call it the expert. Where one of the 
constraints on the induction process is a limit on the 
number of instances presented to the oracle, the 
choice of instances becomes important. Random 
sampling may be ineffective if one class is very rare: 
all of the training instances presented may have the 
majority class. To make more effective use of the 
expert’s time, methods that we collectively call 
uncertainty sampling label data sets incrementally, 
alternating between two phases: presenting the expert 
a few instances to label, and selecting (from a finite or 
infinite source) instances whose labels are still 
uncertain despite the indications contained in 
previously labeled data. The type of classifier used in 
uncertainty sampling must be cheap to build and to 
use. At each iteration a new classifier is built 
(fortunately from a small sample) and then applied 
(unfortunately to a large sample). Our uncertainty 
sampling method also requires an estimate of the 
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certainty of classifications (a class-probability value); 
not all induction systems provide this. This paper 
examines a heterogeneous approach in which a 
classifier of one type selects instances for training a 
classifier of another type. It is motivated by 
applications requiring a type of classifier that would 
be too computationally expensive to use to select 
instances. 

 
8. LEARNING FROM IMBALANCED DATA IN 
PRESENCE OF NOISY AND BORDERLINE 
EXAMPLES 

In some real-life problems, the distribution 
of examples in classes is highly imbalanced, which 
means that one of the classes (further called a 
minority class) includes much smaller number of 
examples than the other majority classes. Class 
imbalance constitutes a difficulty for most learning 
algorithms, which assume even class distribution and 
are biased toward learning and recognition of the 
majority classes. As a result, minority examples tend 
to be misclassified. This problem has been intensively 
researched in the last decade and several methods 
have been proposed. They are usually divided into 
solutions on the data level and the algorithmic level. 
Solutions on the data level are classifier-independent 
and consist in transforming an original data 
distribution to change the balance between classes, 
e.g., by re-sampling techniques. Solutions on the 
algorithmic level involve modification of either 
learning or classification strategies. Some researchers 
also generalize ensembles or transform the imbalance 
problem to cost sensitive learning. In this paper we 
are interested in focused re-sampling techniques, 
which modify the class distribution taking into 
account local characteristics of examples. Inspired we 
distinguish between safe, borderline and noisy 
examples. Borderline examples are located in the area 
surrounding class boundaries, where the minority and 
majority classes overlap. Safe examples are placed in 
relatively homogeneous areas with respect to the class 
label. Finally, by noisy examples we understand 
individuals from one class occurring in safe areas of 
the other class. We claim that the distribution of 
borderline and noisy examples causes difficulties for 
learning algorithms, thus we focus our interest on 
careful processing of these examples. Our study is 
related to earlier works of Stefanowski and Wilk on 
selective pre-processing with the SPIDER (Selective 
Preprocessing of Imbalanced Data) method . This 
method employs the Edited Nearest Neighbor Rule 
(ENNR) to identify the local characteristic of 
examples, and then it combines removing the majority 
class objects that may result in misclassifying objects 
from the minority class with local over-sampling of 
these objects from the minority class that are 
“overwhelmed” by surrounding objects from the 
majority classes. Experiments showed that this 
method improved the recognition of the minority class 
and was competitive to the most related approaches 

SMOTE and NCR. The observed improvements 
varied over different imbalanced data sets, therefore, 
in this study we have decided to explore conditions, 
where the SPIDER method could be more efficient 
than simpler re-sampling methods. To achieve this 
goal we have planned controlled experiments with 
special artificial data sets. According to related works 
many experiments were conducted on real-life data 
sets (e.g., coming from UCI). The most well known 
studies with artificial data are the works of Japkowicz, 
who showed that simple class imbalance ratio was not 
the main difficulty. The degradation of performance 
was also related to other factors, mainly to small 
disjuncts, i.e., the minority class being decomposed 
into many sub-clusters with very few examples. Other 
researchers also explored the effect of overlapping 
between imbalanced classes – more recent 
experiments on artificial data with different degrees of 
overlapping also showed that overlapping was more 
important than the overall imbalance ratio. 

 
Following these motivations we prepare our 

artificial data sets to analyze the influence of the 
presence and frequency of the noisy and borderline 
examples. We also plan to explore the effect of the 
decomposition of this class into smaller subclusters 
and the role of changing decision boundary between 
classes from linear to non-linear shapes. The main 
aim of our study is to examine which of these factors 
were critical for the performance of the methods 
dealing with imbalanced data. In the experiments we 
compare the performance of the SPIDER method and 
the most related focused re-sampling NCR method 
with the oversampling methods suitable to handle 
class decomposition and the basic versions of tree or 
rule-based classifiers. 

 
9. LEARNING FROM IMBALANCED DATA 

RECENT developments in science and 
technology have enabled the growth and availability 
of raw data to occur at an explosive rate. This has 
created an immense opportunity for knowledge 
discovery and data engineering research to play an 
essential role in a wide range of applications from 
daily civilian life to national security, from enterprise 
information processing to governmental decision-
making support systems, from micro scale data 
analysis to macro scale knowledge discovery. In 
recent years, the imbalanced learning problem has 
drawn a significant amount of interest from academia, 
industry, and government funding agencies. The 
fundamental issue with the imbalanced learning 
problem is the ability of imbalanced data to 
significantly compromise the performance of most 
standard learning algorithms. Most standard 
algorithms assume or expect balanced class 
distributions or equal misclassification costs. 
Therefore, when presented with complex imbalanced 
data sets, these algorithms fail to properly represent 
the distributive characteristics of the data and 
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resultantly provide unfavourable accuracies across the 
classes of the data. When translated to real-world 
domains, the imbalanced learning problem represents 
a recurring problem of high importance with wide-
ranging implications, warranting increasing 
exploration. This increased interest is reflected in the 
recent instalment of several major workshops, 
conferences, and special issues including the 
American Association for Artificial Intelligence (now 
the Association for the Advancement of Artificial 
Intelligence) workshop on Learning from Imbalanced 
Data Sets (AAAI ’00) , the International Conference 
on Machine Learning workshop on Learning from 
Imbalanced Data Sets (ICML’03), and the 
Association for Computing Machinery Special 
Interest Group on Knowledge Discovery and Data 
Mining Explorations (ACM SIGKDD Explorations 
’04). With the great influx of attention devoted to the 
imbalanced learning problem and the high activity of 
advancement in this field, remaining knowledgeable 
of all current developments can be an overwhelming 
task.  As can be seen, the activity of publications in 
this field is growing at an explosive rate. Due to the 
relatively young age of this field and because of its 
rapid expansion, consistent assessments of past and 
current works in the field in addition to projections for 
future research are essential for long-term 
development. In this paper, we seek to provide a 
survey of the current understanding of the imbalanced 
learning problem and the state-of-the-art solutions 
created to address this problem. Furthermore, in order 
to stimulate future research in this field, we also 
highlight the major opportunities and challenges for 
learning from imbalanced data. 

 
10. C4.5, CLASS IMBALANCE, AND COST 
SENSITIVITY: Why Under-Sampling beats Over-
Sampling  

A study on the two most common sampling 
schemes used to adapt machine learning algorithms to 
imbalanced classes and misclassification costs. We 
look at under-sampling and oversampling, which 
decrease and increase, respectively, the frequency of 
one class in the training set to reflect the desired 
misclassification costs. These schemes are attractive 
as the only change is to the training data rather than to 
the algorithm itself. It is hard to justify a more 
sophisticated algorithm if it cannot outperform 
existing learners using one of these simple sampling 
schemes. Here, we study the sampling schemes and 
how they affect the decision tree learner C4.5, release 
8 . We chose C4.5 not only because it is one of the 
most commonly used algorithms in the machine 
learning and data mining communities but also 
because it has become a de facto standard against 
which every new algorithm is judged. For research 
into cost sensitivity and class imbalance C4.5 
combined with under-sampling or over-sampling is 
quickly becoming the accepted baseline for 
comparison. Using our own performance analysis 

technique, called cost curves, discussed briefly in the 
next section, we show that under sampling produces a 
reasonable sensitivity to changes in misclassification 
costs and class distribution. However, when using 
C4.5’s default settings, over-sampling is surprisingly 
ineffective, often producing little or no change in 
performance as these factors are changed. We go on 
to explore which aspects of C4.5 result in under-
sampling being so effective and why they fail to be 
useful for over-sampling. We have previously shown 
that the splitting criterion has relatively little effect on 
cost sensitivity. Observed that costs and class 
distribution primarily affect pruning. Still, we did not 
find that this was the main cause of the difference 
between the two sampling schemes. Oversampling 
tends to reduce the amount of pruning that occurs. 
Under-sampling often renders pruning unnecessary. 
By removing instances from the training set, it stunts 
the growth of many branches before pruning can take 
effect. We find that over-sampling can be made cost-
sensitive if the pruning and early stopping parameters 
are set in proportion to the amount of over-sampling 
that is done. But the extra computational cost of using 
over-sampling is unwarranted as the performance 
achieved is, at best, the same as under-sampling. 

 
11. USING RANDOM FOREST TO LEARN 
IMBALANCED DATA  

Many practical classification problems are 
imbalanced; i.e., at least one of the classes constitutes 
only a very small minority of the data. For such 
problems, the interest usually leans towards correct 
classification of the “rare” class (which we will refer 
to as the “positive” class). Examples of such problems 
include fraud detection, network intrusion, rare 
disease diagnosing, etc. However, the most commonly 
used classification algorithms do not work well for 
such problems because they aim to minimize the 
overall error rate, rather than paying special attention 
to the positive class. Several researchers have tried to 
address the problem in many applications such as 
fraudulent telephone call detection, information 
retrieval and filtering, diagnosis of rare thyroid 
deceases and detection of oil spills from satellite 
images. There are two common approaches to tackle 
the problem of extremely imbalanced data. One is 
based on cost sensitive learning: assigning a high cost 
to misclassification of the minority class, and trying to 
minimize the overall cost. The other approach is to 
use a sampling technique: Either down-sampling the 
majority class or over-sampling the minority class, or 
both. Most research has been focused on this 
approach. SHRINK, for imbalanced classification. 
SHRINK labels a mixed region as positive (minority 
class) regardless of whether the positive examples 
prevail in the region or not. Then it searches for the 
best positive region. They made comparisons to C4.5 
and 1-NN, and show that SHRINK has improvement 
in most cases. It uses the one-sided sampling 
technique to selectively down sample the majority 
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class. Over-sample the minority class by replicating 
the minority samples so that they attain the same size 
as the majority class. Over-sampling does not increase 
information; however by replication it raises the 
weight of the minority samples. Combine over-
sampling and down-sampling to achieve better 
classification performance than simply down-
sampling the majority class. Rather than over-
sampling with replacement, they create synthetic 
minority class examples to boost the minority class 
(SMOTE). They compared SMOTE plus the down-
sampling technique with simple down-sampling, one 
sided sampling and SHRINK, and showed favorable 
improvement. Apply the boosting procedure to 
SMOTE to further improve the prediction 
performance on the minority class and the overall F-
measure. 

 
We propose two ways to deal with the 

problem of extreme imbalance, both based on the 
random Forest (RF) algorithm. One incorporates class 
weights into the RF classifier, thus making it cost 
sensitive, and it penalizes misclassifying the minority 
class. The other combines the sampling technique and 
the ensemble idea. It down-samples the majority class 
and grows each tree on a more balanced data set. A 
majority vote is taken as usual for prediction. We 
compared the prediction performance with one-sided 
sampling, SHRINK, SMOTE, and SMOTE Boost on 
the data sets that the authors of those techniques 
studied. We show that both of our methods have 
favorable prediction performance. 

 
12. CONCULSION 

A new method called neighborhood cleaning 
rule is described that utilizes the OSS principle, but 
considers more carefully the quality of the data to be 
removed. Certain algorithms specifically modify the 
behavior of existing algorithms to make them more 
immune to noisy instances, such as the IB3 algorithm 
for kNN, or pruning of decision trees, or soft margins 
in SVM. The class distribution of training data and 
classifier performance with respect to accuracy and 
AUC is analyzed. The decision rules C4.5 produced 
from uncertainty samples of roughly 1,000 instances 
chosen by a probabilistic classifier were significantly 
more accurate than those from random samples ten 
times larger. New techniques are been used to solve 
the several issues of the rule based training data with 
the help of decision making process.  
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